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Abstract

This study focuses on two new aspects on inverséelilog of volcanic emissions. First, we derive @pservation
operator for satellite retrievals of plume heigintd second, we solve the inverse problem usingtih&/ar method. The
approach is demonstrated by assimilating IASE lome height and total column retrievals in a sewerm inversion for
the 2010 eruption of Eyjafjallajokull. The inversioesulted in temporal and vertical reconstructibrihe SQ emissions
during the 1-20 May, 2010 with formal vertical aednporal resolutions of 500 m and 12 hours.

The plume height observation operator is basedimulgneous assimilation of the plume height angltcolumn
retrievals. The plume height is taken to represiemtvertical centre of mass, which is transformad the first moment of
mass. This makes the observation operator linedrsanple to implement. The necessary modificatimnthe observation
error covariance matrix are derived.

Regularisation by truncated iteration is investglahs a simple and efficient regularisation mettoodhe 4D-Var based
inversion. In an experiment with synthetic obsdora, the truncated iteration was found to perfaimilarly to the
commonly used Tikhonov regularisation. However, tthcated iteration allows the amount of reguéits to be varied a
posteriori, without repeating the inversion. Foverting the Eyjafjallajokull S@ emission at the temporal and vertical
resolution used in this study, the 4D-Var methaglineed about 70% less computational effort thanmomly used methods
based on performing a separate model simulatioedoh degree of freedom in the estimated souroe ter

Compared to the inversion using only total columtnievals, assimilating the plume height resulted vertical emission
profile more closely matching the ash plume heigiiserved by radar. The a posteriori source tena ga estimate of 0.29
Tg erupted S@of which 95% was injected below 11 km.
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1 Introduction

Sulphur dioxide (S€) is one of the major gas-phase species releasedl¢anic eruptions. Large SQeleases pose a
hazard to aviation, decrease air quality, and asyssors to sulphate aerosols, have a potentiadtrthe Earth’s radiative
balance (Bernard and Rose, 1990; Robock, 2000; fttenal., 2015). Volcanic Splumes can be detected by satellite
instruments measuring in either UV or IR wavelesgtihowever, reliably forecasting the atmosphegogport of volcanic
plumes is hindered by the lack of in-situ measurgmé characterise the emission fluxes of volcapiecies (Carn et al.,
2009; Stohl et al., 2011; Zehner, 2012).

While methods based purely on satellite retriej@teys et al., 2013 and references therein) earsinferring the total
SO flux for a given eruption, a successful predict@nvolcanic tracers generally requires informataso on the vertical
profile of emissions. An important technique fosessing both vertical and temporal distributioringf emission fluxes is
provided by inverse dispersion modelling, first dersirated for volcanic emissions by Eckhardt ef24108).

The previous studies on inverse modelling of valcamissions have been based on using total cohetnievals of S@
or volcanic ash together with a Lagrangian (Krissian et al., 2010; Stohl et al., 2011) or Eule(doichu and Clarisse,
2014; Boichu et al., 2013) dispersion models. Iditiwh, Flemming and Inness (2013) devised a ttajgdbased scheme to
evaluate the vertical emission profile, which wasdi together with assimilation of $@etrievals with the IFS weather
prediction system. The previous studies have dstrated that the vertical distribution of emissi@as be inferred from
total column retrievals in presence of sufficieattical wind shear. However, in the case of theafgilajokull eruption in
2010, both Boichu et al. (2013) and Flemming anmges (2013) pointed out a lack of wind shear asmgbaequent difficulty
at estimating the vertical distribution of emission

Retrievals of S@plume height have been performed with variousllgaténstruments (Carboni et al., 2012; Rix et al.
2012). Nevertheless, only a few studies have irmated these data into models. Wang et al. (20&Bved a three-
dimensional S@ distribution from retrievals by the Ozone Monitagi Instrument (OMI), and used the distribution to
initialize CTM simulations for the 2008 eruption #&fasatochi. Wilkins et al. (2015) used 1D-Var asfrievals for
initialising dispersion simulations. However, neithof the studies used plume height retrievalsnireise modelling of
volcanic emissions.

The first objective of the present paper is to ssshe usefulness of assimilating S8ume height retrievals from the
Infrared Atmospheric Sounding Interferometer (IABI3trument in a source term inversion. In Sec8dh we develop an
observation operator for the vertical centre of sn&nce the observation operator only depend$@rentre of mass and
column loading, the vertical profile is only partgnstrained. However, in contrast to the previstuslies, this approach
makes no further assumptions about the shapeaknéiss of the SQOayer. This could be advantageous, since volcasic
or SQ layers vary considerably in depth (Dacre et &14) and can be emitted in multiple, overlappingta (Kristiansen
et al., 2010). In addition, our approach makes sk of the retrieval error estimates provided i IAS| data for both

column mass and plume height, including the esgchabrrelation between plume height and mass errors
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The second objective of this paper is to exploedbnnection between the source term inversiontla@dD-Var data
assimilation widely used in numerical weather pegdn. Elbern et al. (2000) showed that the 4D-#ssimilation method
(Le Dimet and Talagrand, 1986) can be easily exadridto estimating emission fluxes with a chemistansport model.
Under the assumption of a linear dispersion moadel abservations, the 4D-Var formulation resultsaideast squares
problem similar to that solved by many existingdrsion algorithms. However, the iterative solutemployed in 4D-Var
favours a different regularisation approach, whstiiscussed in Section 4.

Finally, we test the variational inversion methoul @ssimilation of plume height retrievals for egtling temporal and
vertical distribution of S@ emission during the 2010 eruption of Eyjafjallajok Results of the inversion, presented in
Section 5, indicate that assimilation of plume heigetrievals results in more vertically concerdgcaemission profile. In
particular, emissions above 8-10 km are reducedtanbally, which is consistent with radar-basetihestes of the eruption

column height.

2 Model setup and observational data
2.1 Dispersion model

The transport and removal of $@as evaluated using the dispersion model SILAMs{&w for integrated modelling of
atmospheric composition; Sofiev et al., 2015, fgpam.fmi.fi) version 5.3. The model includes ofieal removal of S@
as described by Sofiev (2000) with the OH climagglof Spivakovsky et al. (2000). The computatioresenvdriven by the
ERA-Interim meteorological reanalysis (Dee et 2D11) except for evaluating the simulated sateléiteievals described in
Section 4, where operational ECMWF forecasts weeslL

SILAM includes a variational data assimilation miejuwhich was previously used for assimilation af guality
monitoring data of Seby Vira and Sofiev (2012). This study uses theesassimilation system, but instead of estimating a
refinement for a regional emission inventory, wekséo reconstruct the emissions for a single votcamuption as a
function of time and injection height.

The model was configured for a domain covering 5@7B0°W and 30°N to 80°N. Horizontal resolution(®56° was
used for the inversion, while the a posteriori dations were run with a higher 0.25° resolutiorheTvertical discretisation

consists of 34 terrain-following z-levels with albf resolution at the top of the domain increasin§0 m near the surface.

2.2 Observations: the IASI dataset

IASI is an infrared Fourier transform interferometbat measures in the spectral range 645-2760 with spectral
sampling of 0.25 crh(apodized spectral resolution of 0.5 cm-1) anddiabal coverage every 12h. The levlb dataset from
EUMETSAT/CEDA archive is used in this study.
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The algorithm and the dataset are explained in rdetail by Carboni et al. (2012). The same algaritias been applied
to other volcanic eruptions and successfully comgawith other datasets (Carboni et al., 2016; Froeinal., 2014;
Koukouli et al., 2014; Schmidt et al., 2015; Spinet al., 2014).

The main points of the retrieval scheme are:

Retrieval are performed for the pixels that weenitified by the S@detection scheme (Walker et al 2011, 2012).

All the channels between 1100-1200 and 1300-1418 ama used in the iterative optimal estimation estai scheme to
obtain S@ column amount and altitude of the plume (in pressunder the assumption that the vertical conaéatr of
SO, follows a Gaussian distribution) together with theface temperature. The scheme determines thennchmount and
effective altitude of the SOplume with high precision (up to 0.3 DU error i©Samount if the plume is near the
tropopause), and it is well suited for plumes iw looposphere.

The IASI SQ retrieval is not affected by underlying cloudthe SQ is within or below an ash or cloud layer its signa
will be masked and the retrieval will underestim@ite SQ amount. In the case of ash this is discerniblestguiori by the
value of the cost function. The altitude retrievedthe Eyjafjallajokull eruption plume (using samataset as in this paper)
in presence of underlying cloud is consistent whiln CALIPSO vertical backscatter profile (Carbonake2016, Figs. 1,2,3).

A comprehensive error budget for every pixel iduded in the retrieval. This is derived from anoercovariance matrix
S: that is based on the $®ee climatology of the differences between th&land forward modelled spectra.

Note that the error covariance;, & defined to represent the effects of atmosphedtriability not represented in the
forward model, as well as instrument noise. Thidudes the effects of cloud and trace-gases whiehnat explicitly
modelled. The matrix is constructed from differencetween forward model calculations (for clearyskyd actual IASI
observations for wide range of conditions, whenane confident that negligible amounts of S{Pe present. It follows that
a rigorous error propagation, including the incogtion of forward model and forward model parameteor, is built into
the system, providing quality control and errorireates on the retrieved state. The retrieval stater covariance matrix,

used for the assimilation in this work, is diregtipvided as output of the retrieval pixel by pixel

2.3 Inversion experiments

The IASI data were assimilated in inversion experits for the Eyjafjallajokull (2010) eruption. Tkeuption has been
described in detail by Gudmundsson et al. (201Bg &xperiments covered the time between 1 and 24 R04.0, which as
shown by Flemming and Inness (2013) included thsetmignificant S@releases.

The emission flux density (kg-frs') was estimated for each model level in steps dfidiZs. The inversions were made
with three configurations: with assimilation of batolumn mass and centre of mass, with assimilatf@olumn mass only,
and with assimilation of both column mass and eenfrmass but with a simplified formulation for thbservation error
covariance matrix.

Additionally, Section 4 describes a set of invemsexperiments with simulated observations. Thege®xents were
performed with similar configuration as the maipersiments, but with a lower vertical resolutionlofm.

4
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3 Assimilation and inversion methods

The forward problem for volcanic tracer transpartdiefined by the advection-diffusion equation: gitbe emission

forcing f , solve

@) %+V-(0V)—V'(KVC)= f(x,t)-s(c,x.t),

where ¢ is the tracer concentratio®, is the wind vectorK is the turbulent diffusivity tensor, ans(c, x,t) denotes the

chemical and other sinks.

3.1 Variational source term inversion

The inverse problem discussed in this paper is to detertménforcingf , given a set of observations depending oie

assume that Eqg. (1) has been discretised, and followingotinenon notation in data assimilation literature, we den@te th
tracer concentrations, collectively for all time steps, with thgéesvectox . The state vector is related to the unknown

parameter vectof by the model operatovt. Finally, the vectory of observations is given by the possibly non-linear
observation operatagl asy = H(X) +¢, whereg denotes the observation error.

If the observation errors follow a multivariate normal disttion with covariance matrixR , then a solution to the
inverse dispersion problem can be sought by maximisiadjkalihood function, which is equivalent to minimisittge cost

function
@ ) = %(y “HE)RMY ~HKX)).

where x = M(f) . Model errors are not explicitly included in the cost funti

If the model and observation operators are linear, representathtoiges M andH , then (2) becomes a linear least-
squares problem. For volcanic eruptions with a known logathe emission vectofr is zero almost everywhere, which
makes it feasible to evaluate the matik and solve (2) algebraically. This is the basis for inversiethods of Boichu et
al. (2013), Eckhardt et al. (2008) and Lu et al. (2016).

As an alternative to the algebraic solution, the minimisapimblem (2) can be solved with gradient-based, iterative
algorithms, which avoids evaluating the mati . In this study, the cost function is minimized usihg L-BFGS-B
algorithm of Byrd et al. (1995) which allows constrainithg solution to non-negative values. Evaluating the gradient
requires solving the adjoint problem for Eq. (1).

The iteration is continued until a stopping criterion ids§ied, e.g. until the norm of the gradient is reduced by a
prescribed factor. However, in Section 4 we will discusactiting the iteration before formal convergence in order to

control the regularization.
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3.2 Assimilation of plume height retrievals

Given the tracer concentratiarix, y, z) in three dimensions, the observation operator for colutegrated mass is given

by
N

©) y=m =>Wclx,Y;.2)
k=1

where x,y; and z_are the gridpoint coordinatesd w, denotes the thickness (in meters) of kite model level. The

layer concentrations are often weighted with arragieg kernel (Eskes and Boersma, 2003) to acciourthe vertically
varying sensitivity of the satellite retrieval. inis work, weighting is not applied because thellASrievals treat the plume
height explicitly.

In the retrievals, the plume height is represebteds centre of masg,, . It would be possible to develop an observation

operator foz_, , however, the operator would be nonlinear and defjned for nonzero columns. These problems can be

Cc™m !

overcome by replacing the centre of mass with tfe¢ moment of massiZ.,, . Then, the observations consist of pairs

(m;,m;Zey ;) given by

N
(mj J _ kZ:; chljk
(4) m,- ZCM Jij ZN: z,
k=1

WG

where z, is the height of th&th model level and andj refer to the horizontal coordinates. Transformntimg observations of
Z,, into mZ.,, changes the magnitudes of observation errors,iindduces a correlation between the observation
componentsn andmZ.,, . However, this effect can be evaluated and indud® the observation operator.
Denote the means and standard deviationswadnd Z,, with x,,x, and o,, and o,. Assuming that the errors of
and Z.,, are normally distributed, it can be shown thatwhgance of first moment equals
Var[mZ,, ] = xurio-zz + xuzz O_ﬂz] + O-nrzp-z2
(5) 24t 11,COVM, Z, ]
+Covim,Z, F.

Under similar assumptions, the covariancerobind mz.,, becomes
(6) Covim,mZ,, ] = o2, + u,,Covim,Z,, 1.
Finally, the expectation ofiZ,, is shifted due to the correlation between retieed m and Z,, :

(7) E[MZqy ] = #pt, +Covlm Z, ] .
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The retrieval errors of different pixels are assdne be uncorrelated. The observation error comagamatrix R is
therefore block-diagonal, and its entries can @uated from the known covariancesmafand Z,,, using Egs. (5) and (6).

Assimilation schemes commonly assume uncorrelatatl inbiased observation errors. A non-diagoRatan be

introduced with a transformation of variables: defi

LL =R *
8 y=L(y-b)
H=LH

where L'L is the Cholesky factorisation of the inverse oston error covariance matriR * and b = (0, Covim,Z,, ))
corrects for the bias according to Eq. (7). Theisstuting the transformations of Eq. (8) into ttwest function (2) shows
that assimilation ofy with the originalR is equivalent to assimilation of using the transformed observation operator
with unit matrix in place oR.

The above formulas can be implemented as a pregsiocestep for the observations. In summary, teeqtfure is then
as follows:

1. For each available IASI pixe| evaluate the tuple, —b, = (m,mZ,; - Covim,Z,;]) and the corresponding
2x2 covariance matrii, .

2. FactoriseRl’1 =L'L, and transform the observations according to Eq. (8)

3. Store the transformed observatiofswith their pixel-specific vertical weighting funotis given by rows of the
matrixH =L H .

After the transformation, the observations are hlahitlentically to regular column observations wvétkiertical weighting

function.

3.3 Observation errors

The IASI retrievals used in this study include pigpecific error estimates for total column andrpéuheight retrievals.
The estimates are derived statistically (Carbomile2012) from differences between the transmiisspectra computed by
a forward model and those observed by IASI. Togettith estimates for the correlation between plumeéht and total
column retrieval errors, this provides the necsassgout for equations (5) and (6).

The retrieval error estimates are only providedpieels with positive S@detection. For the non-SQ@ixels, which are
assimilated as zero values, a different estimatesésl, based on the detection limits estimated bik&Y et al. (2012). The
detection limit was translated into a standard atéw of a Gaussian random variable assuming, ceaibeely, a

probability of 0.95 for a correct detection.
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However, performing the inversions witk defined only by retrieval errors resulted in pograsteriori agreement with
the IASI data, which suggested that the retriewadre are not sufficient to describe the discreparetween the simulated
and observed values. As found in the synthetic @xeats, the impact of model uncertainty is sigrfit compared to the
retrieval errors, and it needs to be taken intmaet The problem of model errors affecting theension is discussed by
Boichu et al. (2013), who found the impact to depstrongly on treatment of zero-value observatiamsl consequently
chose to keep only every tenth zero-valued observat

In this study, the model errors are included by ifyoty the observation error covariance matrix, ethiis set to
R=R,.+R, . WhereR,__,, is diagonal and corresponds to experimentallyrdeteed constant standard deviations of 2
DU for total column and 1 km for the plume height.

The model errors for plume height and total coltamm assumed uncorrelated and independent of tleevaltien errors.
However, their effect is propagated to the covagamatrix for first moment according to Eq. (5).eTéctual model errors
are likely to be variable and correlated in spaue lbetween the plume height and total column comptsy however, a
more advanced treatment appears difficult in threecti inversion approach.

3.4 Regularization

The least squares problem (2) has a unique solotibnif the matrix HM is of full (numerical) rank. Furthermore, if
HM is close to singular, the problem remains ill-phsehich results in a noisy solution. Consequergtyne form of
regularisation has been employed in all previouka/based on the least-squares approach.

A common option is the Tikhonov regularisation, @introduces a penalty term into the cost func{@)n which in the
simplest form becomes

©) J(f)%(y—Hx)TR*(y “H)+a?Yw, [, P

where the summation is over levkland timestepa. The weightsw, in Eq. (9) are set equal to the thickness of eactiel
layer; this makes the penalty term consistent vtgttcontinuous Counterpad.tf(z,t)zdtdz, which in turn ensures that the

regularisation term does not depend on the vertisalretisation.

The penalty term can be modified to include a nema priori source term. However, this approachoistaken in the
present work. Instead, we aim to choose the lefvedgularisation optimally, so as to avoid excesdiias in the regularised
solution. The need for regularisation depends erctiverage of observations, accuracy of the forwaodel as well as on
the meteorological conditions controlling the dispien. Thus, the regularisation paramet€r cannot be chosen a priori.

In this work, a criterion known as the L-curve (tdan, 1992) is used for determining the amoun¢gidilarisation. In the

L-curve approach, the inversion is performed wihious values ofx*, and the residugly — Hx| is plotted as a function of

the solution norn1| f || For ill-posed inverse problems, the curve isa¢gfly L-shaped. The residual initially reduces glic
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as the regularization is relaxed, however, for sealae of o, the curve flattens and reducing the regularizafiother
only marginally improves the fit. This point, wherecurve reaches its maximum curvature, is takerepsesent the optimal
regularisation. In the present study, the L-cusvevaluated without the frequently used logarithtrdasformation.

The main advantage of the L-curve method is thdbés not rely on a priori estimates for the olesn error. This is
useful, since in practice the discrepancy betwé@enlated observations and the data is also affanyasiodel errors, which
are poorly known. The L-curve was, in effect, usethverse modelling of volcanic S@lso by Boichu et al. (2013).

Changing the regularisation parameter requiresni@misation to be started over, which is costlytli®e variational
inversion scheme where each iteration requires demmtegration. However, as noted by Fleming (19806d Santos
(1996), the iteration itself forms a sequence dfitsmns with decreasing regularisation. Thus, @ast of minimising the
regularised cost function (9), we iterate to mirsienthe original cost function (2), and truncateitbetion according to the
L-curve criterion. In the following section, we sh@xperimentally that such an approach resultsniila solutions as the
more common Tikhonov regularisation.

4  Experiments with synthetic data

Regularisation by truncated iteration has beeniestiish detail especially for Krylov subspace baakgbrithms (Calvetti
et al., 2002; Fleming, 1990; Kilmer and O’Leary,02]. The effect of truncated iteration on quasi-ewminimisation
methods, such as the L-BFGS-B algorithm used s wWork, has been studied less extensively. To atalthe truncated
iteration in comparison to Tikhonov regularisatfoninverse modelling of volcanic emissions, wefpened an experiment
with synthetic data generated for the points olehwy IASI during the simulated period of 1-21 Ma@,10. In addition to
the comparison of regularisation methods, the sfigtfexperiments enable us to evaluate robustrfgbe d.-curve method
and to assess how model errors affect the sountedstimate.

The inversions were performed for a set of arafisource profiles (cases A to D) shown in thetefit column of Figure
1. The cases A and B are defined arbitrarily, wbilees C and D are realisations of a stochast@epsovhere the total flux
(kg/s) is given by a lognormal, temporally correthtandom variable and the eruption height follthesrelation of Mastin
et al. (2009). At each time, a piecewise constertical profile is assumed with a transition at 768height. The emission
rate is distributed evenly between the two sections

For the sake of computational convenience, ther@rgets in this section were carried out by prehgating the forward
sensitivity matrixHM by running a separate model simulation for eachpmrant of the emission vectdr. In order to
simulate the effect of model errors, the matfikl was evaluated with both the ERA-Interim and operal ECMWF
forecast fields as meteorological drivers.

The sensitivity matrix for inversions was extractedm the run with ERA-Interim meteorological dafBhe set of
synthetic observations of the $@olumn density, on the other hand, was evaluateoh fthe model run based on the

operational meteorological fields and used as @ dor the inversion experiments. The simulatedeokations were

9
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perturbed with Gaussian noise with standard dewagqual to 1 DU + 30% of the true value. The oke@n error
covariance matrix used in the inversion was supeteed with 2 DU “model error” as described in Sme.3.

The residual and solution norms, which define thmitves, are evaluated consistently to the persatipst function (9):

[Hx—y] = (Hx -y )R *(Hx -y )

(10) ,
"f": ’;Wk | fk,n |2

where f denotes the emission=Mf and w, is the thickness of th&th model layer. To evaluate the L-curve for

Tikhonov-regularisation, the parametef was incremented in discrete steps giveraBy=10"- 2" for i =0,1,2,.. . The L-
BFGS-B minimization method with non-negativity coait was used for both Tikhonov regularisationl déime truncated

iteration; in the case of Tikhonov regularisatithe iteration was continued until convergence faehesr” . With truncated
iteration, the weightsw, , required by Egs. (9) and (10), are not explicitigluded in the cost function. Instead, the same
effect is achieved by transforming the parametetoreas f,, = w{/*f, .

The point where the L-curve flattens, which is talkes the final solution, was determined numericdfiyst, the points
(If].[Hx —y])) are sorted according to increasifiig|. Then, the points where the residual increasesrar®ved, and

finally, the optimal point is chosen using thedtrgle” algorithm of Castellanos et al. (2002).

The inversion results using truncated iteration @dionov regularisation are presented in the nedudid left columns of
Figure 1. In each test case, the emission timingei captured within the 12 h resolution. The @bevertical profiles are
also recovered, however, spurious features areprespecially in cases B and C. The total emittads is underestimated
by < 10 % for the solution from truncated and by t@pabout 15 % for the Tikhonov-regularised solutidhe
underestimation is expected due to the form of fuosttion (9). However, the inversion results shitvat the negative bias
is not necessarily large unless the problem isleeiged too strongly.

For comparison, Figure 2 presents the solutioresponding to the case B in Figure 1 but evaluaidtbut model errors
- that is, using the same sensitivity matkiM for both evaluating the observations and perfognihe inversion. In this
case, regularisation was not needed, and the tluéiom was recovered almost perfectly despite rtbisy observations.
Thus, the noise present in the estimated solufiofsgure 1 is mainly due to model error, whicheatt the elements of
matrix M .

The L-curves corresponding to each case in Figueehown in Figs. 3 and 4. The root mean squamed (RMSE) of
the solution is shown next to each L-curve as atfan of the regularisation parameter. When meakbrsethe solution
RMSE, an optimal regularisation indeed existeddnhecase. In case A, where the solution varies #iyom time and
space, the solution error is only moderately simsib the regularisation. The L-curve formed bg t-BFGS-B iterates is
shallow in this case, which caused the algorithnchioose an unnecessarily high number of iteratiblmvever, the
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negative effect on the solution quality was sméalhr the Tikhonov regularisation, the regularisatiparameter was
determined almost optimally.

The choice of regularisation was more criticalhie temaining cases. In cases B and C, the L-cuaseattlear plateau
after initial decrease, and the chosen corner peictose to optimal for the both regularisationtmogls. In case D, the
truncated iteration leads to a somewhat under-agigeld solution similar to case A.

Outcome of the four experiments indicates thatrtbed for regularisation varies strongly dependinghe true source,
whose characteristics also affect how accuratayatjorithm determines the optimal regularisatidie used the stochastic
source terms to evaluate this more quantitatiiéigure 5 presents the RMSE as a function of thatittn number for 40
realisations of the stochastic source term usedses C and D. The optimal iteration numbers chfseemeach L-curve are
marked with stars.

The RMS errors shown in Figure 5 are normalisedhieyminimum error for each inversion, which shotattin most
cases, the inversion was only moderately senditiibe exact point of truncation. In 34 cases dut(G) the RMSE of the
solution determined from the L-curve was within 2@%m the optimally regularised solution. Of thenaning six cases,
two were over-regularised and four were under-iaiged.

While the experiments in this section were perfatrhg pre-evaluating the matriM , in 4D-Var, the multiplications
by HM and its transpose are replaced by forward andrddjaodel evaluations. Although the approachesfanmally
equivalent, this change results in a slightly défé sequence of iterations from which the L-cuiveevaluated. To
investigate this difference, we performed the isi@r using the real IASI data using both approachikee two solutions are
shown in Figure 6. The total released mass diffgréess than 1% between the solutions, and thes@migpatterns are
qualitatively similar. The differences for individvalues, although larger, appear small comparéldet inversion errors.

In summary, the experiment with synthetic data sftbthat the truncated iteration resulted in sohgisimilar to those
obtained with the more common Tikhonov regulargatiThis makes the truncated iteration, in comimmatvith the L-
curve, an attractive option for regularising theiaional source term inversion. On the other hahd, overall need for
regularisation depended strongly on the assumettesderm. No regularisation was needed in absehcaodel error,
which indicates that the need for regularisatiolikely to also depend on quality of the forwarddeb This emphasizes the
need for a robust method to determine the appr@eprégyularisation according to the situation atchan

5 Inversion results for Eyjafjallajokull

Optimising the source term following the regulatisa strategy described in Section 3.4 results atelte-derived
estimates on the temporal and vertical emissiofilpspas well as on the total emitted amount. $blations presented here
correspond to iterates chosen from the L-curveessribed in Section 3.4. For assimilation of columass only, the 9th
iterate was chosen; with column mass and plumehhaggimilation, the 13th iterate was chosen.

11
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Figure 7 shows the temporal and vertical distrinuf the S@emission obtained both with and without assinolatf
plume height. The plume height time series estichfitem radar and camera observations (Petersdn 2042) are plotted
on top of the emission distributions. Even if thsible plume does not necessarily coincide with$i@ plume, the plume
height observations provide an indication of thgéon activity.

The strongest emission occurred during 6th May. él@s, the vertical distribution of the peak depeodswvhether the
plume height is assimilated. While the maximum esat 5-6 km, if plume height is not assimilategcadary maxima
appear at 11 km, reaching 13 km on 9th May. If gumight retrievals are assimilated, the emissimvea about 8 km is
strongly suppressed. Similarly, on 18th May, tledaited emissions at 10 and 15 km are essentiatipved when the plume
height is assimilated.

Figure 8 shows the vertical profile of emissionegnated over the whole period. The bulk of emissiare between 2
and 8 kilometres even if only column density isiragated. Assimilating the plume height retriev@isther decreases the
fraction of emissions above 8 km. When the plumgtias assimilated, about 85% of total emissioesimated below 8
km and about 95% below 11 km.

The total released mass of S 0.33 Tg when plume height is not assimilated 829 Tg when plume height is
assimilated. Figure 9 depicts the emission flua dgnction of time and shows that while the largiference in emission
rate is during the peaks of 6th May, the assinadtatf plume heights tends to decrease the emisatenthroughout the
eruption.

The inversion results of Figure 7 can be comparid tose in Figure 10, which are obtained by asating both total
column and plume height but neglecting all off-diagl observation error covariance matrix elemehte distribution of
emissions differs strongly from both cases in Fegtiy and the vertical distribution remains as gpeesawith assimilation of
total column only. The treatment of observatiomer as described in Section 3.2 is therefore assaey step for successful
assimilation of the plume height retrievals.

The SQ column densities simulated a posteriori are shimw®-10 May in Figs. 11 and 12, along with theresponding
IASI retrievals. The overall patterns are well @guced, although the column density is underestich&dr some parts of
the plume, especially on 7th and 8th of May. Duthtosmaller total emission, the column densitresstightly lower when
plume height is assimilated, however, the diffeesiscsmall.

The plume height, evaluated as centre of masss-®iMay is shown in Figure 13. Compared to IASE #imulation
based only on assimilation of total columns temmdsverestimate the plume height for all four dadhen the plume height

retrievals are assimilated, the overestimatiomdsiced consistently, although not entirely removed.

6  Discussion

No a priori assumptions regarding shape the enmgmiofile were made in this study. If only totalwmn retrievals are

used in the inversion, the estimated source tewtudes isolated emissions reaching up to 15 kmhWiume height

12
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assimilation, the vertical distribution becomes enconcentrated and also more consistent with tin@globserved with the
radar, which suggests that the vertical distribu®} and ash emissions was mostly similar.

The centre of mass retrievals only partly constth@vertical distribution, and hence some emiss&nains between 8
and 12 km, and the overestimation of plume heighieduced but not removed in the a posteriori sitraris. However,
given the about 1 km uncertainty in the IASI pluh@ght retrievals and the 1 km assumed model waiogyt(Section 3.3)
included into the observation errors, the inversieaults for plume height are consistent with tlssuanptions of the
inversion.

Previous studies based on Lidar observations (Anenea al., 2010), aircraft measurements (Schuméaah,e2011) or
inverse modelling (Stohl et al., 2011) do not swygégnificant injection above the 10 km altituthawever, these studies
were focused on volcanic ash instead ob,SMd as shown by Thomas and Prata (2011) , asis@ndvere not always
transported together. In contrast, the, pdime height estimates derived from the GOME-2I6& instrument by Rix et al.
(2012) do indicate heights above 10 km and up t&rh3n 5th of May. However, the plume heights esteid from IASI
data are below 6 km for that day, which agrees Withmodelled plume heights (not shown) even wién tal column
retrievals are included in the inversion.

Among the previous emissions estimates for Eyjafj@ull, Flemming and Inness (2013) estimated2b(.g total S@
release using GOME-2 satellite retrievals, and 0.@4ising the OMI retrievals. Our estimates of 60283 Tg are higher,
especially compared OMI, but this is consistentwtite higher total S£Oburden estimated (Carboni et al., 2012) from the
IASI data used in this study.

The experiments with synthetic data (Section 4sti@t the need for regularisation, or in Bayes&ams, the need for a
priori information, strongly depends on the sitoati In addition, the need for regularisation waesrgly affected by
uncertainty of the forward model, and the effoeeded to handle zero-valued observations in tirdsoétmer studies support
this conclusion. The errors arising from the disfmr model are likely to be correlated in spacel, taerefore, introducing
the corresponding non-diagonal elements in the eeariance matrixR could improve the inversion results.

The model errors resulted in noisy temporal andicaremission profiles in the synthetic experingeaihd probably also
in the real inversions. However, the estimateddtal emission were fairly robust regardless ofaeeumed source term or
perturbations to the forward model. Also, halvitg tvertical resolution of the reconstruction (corepkigs. 6 and 7)
resulted in only minimal change in the total entiesiNevertheless, the estimates of the total eanissbuld be affected by
biases in the satellite retrievals, or by modaebrnot exposed by the change of meteorologiceédri

While the regularisation used in this work is egilént to a zero-valued a priori source, a morerinédive a priori source
could be accommodated with a change of variabléserCforms of regularisation proposed for the voicasource term
inversion include second-order temporal smoothBwgjchu et al., 2013), which also could be handlgdrbncated iteration
as discussed by Calvetti et al. (2002).

The variational inversion method is computationafficient if high temporal or vertical resolutios desired for the
reconstruction. In the current configuration, theonstructed solution had formally 1360 degreesegidom. Each iteration
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consisting of one forward and one adjoint integmatithe 25 iterations would require about 1000 daylse simulated. In
comparison, evaluating the matrixM directly would require 1360 model integrationsd dinthe sensitivity was evaluated
in windows of eg. 72 hours, almost 4000 simulatagsdvould be required.

A drawback of the 4D-Var inversion method is thed & posteriori error covariance matrix for thersederm is difficult

to evaluate. However, Monte Carlo techniques cobeldised to sample the a posteriori uncertainty.

7  Conclusions

We have presented an observation operator foevels of the vertical centre of mass of a tracemgl. The operator is
based on transforming the centre of mass into firsment of mass using the retrieval of total coluffine approach was
tested by performing a source term inversion u$i@y retrievals from the IASI instrument during the &jéllajokull
eruption in May 2010.

Assimilating the plume height retrievals reduced tkertical spread of the SGnjection. When the plume height is
assimilated, about 85% of total emission was be3dwn and about 95% was below 11 km. The injectiaiile obtained
by assimilating the plume height retrievals is mowasistent with the radar and camera based oliggryaf the ash plume.

The inverse problem was solved with the 4D-Var mdtembedded into the SILAM dispersion model. Trieda
iteration is proposed as an efficient regularisatizethod for the 4D-Var inversion. Using both raatl synthetic data, the
4D-Var method was shown to produce a similar sotutis the more common algebraic method, but aidenably lower
computational cost.

Experiments with both synthetic and real data ssigat the inversion is sensitive to errors inftv@vard model, and to

their assumed uncertainty. Methods more robustddeierrors are a topic suitable for future redearc

Appendix: moments of products of correlated Gaussiarandom variables

Let X andY be scalar random variables with means and vamsapge x,, oz and oZ. Then, it follows from the

definitions for variance and covariance that

(11) Var[XY] = 6iof + ui ol + ol — 2w, 1oVl X, Y] —Cov[ X,Y]* + Cov[ X ?,Y ?]
and
(12) CoV[X,XY]=E[X ?]E[Y] +Cov[ X2 Y] —E[ X]E[ XY] .

To expandCov[X?,Y?] and Cov[X?,Y]we assume thaK andY are normally distributed. We first define normatiz

auxiliary variables

(13) g -XTH g Yo
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418  Then, by expressiny as
419  (14) Y =cX +41-¢*Z
420  wherec=Cov[X,Y] and Z ~ A/ (0,1) independent ofX , it is simple to verify that

72 \727 _ 2
421 (15) Cov[X“,Y]=2c

Cov[X?,Y]=0.
422 For the original random variablex andY , we find by substituting (13) into the definitioexpanding the terms, and
423  using identities (15) that
424 (16) CoV[X2,Y2] = 2CoM X, Y]?+ 4, 11, CoVX Y]
425 and
426  (17) CoV[X2,Y]=2u, CoviX Y] .

427  Formulas (5) and (6) now follow by combining Egs6) and (17) with (11) and (12).

428  Code availability

429 The source code for SILAM v5.3, including the datsimilation component, is available on requesnftbe authors
430 julius.vira@fmi.fi, mikhail.sofiev@fmi.fi).
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560 Figure 1. Estimated emission flux (kg nmt s?) in source term inversions with simulated data. Tue source terms for the four cases

561 (A to D) are shown in the left column. Solutions umg truncated iteration are shown in the middle calimn, solutions using
562 Tikhonov regularisation are shown in the right colunn.
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565  Figure 2. Estimated emission flux with synthetic d&: inversion results for the case B in Figure 1 auming a perfect forward

566 model.
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571 Figure 4. L-curve (left) and RMS error (right) for inversions with simulated data for cases C and D ikigure 1. The iterate (for
572 truncated iteration) or regularisation parameter (for Tikhonov regularisation) chosen from the L-curveis marked with a star.
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577 Figure 6. Inversion results with real observations:emission flux (kg m! s?) obtained using 4D-Var (left) and by evaluating tie
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580 Figure 7. Inversion results for Eyjafjallajokull. L eft: emission flux (kg m* s') with assimilation of column mass only. Right:
581 assimilation of column mass and plume height withull observation error covariance matrix. White dots denote plume height
582 observations by radar, grey dots denote plume heiglobservations with a camera.
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584 Figure 8. Time-integrated emission of S@©(kg m?) during the simulated period as function of height(m) for the source term
585 inversions with (green) and without (blue) plume hight assimilation.
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588 Figure 9. Estimated SQ emission flux (kg s') as function of time with (green) and without (ble) assimilation of plume height
589 retrievals.
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591 Figure 10. Inversion results for Eyjafjallajokull: emission flux (kg m' s1) with assimilation of column density and plume hajht
592 but neglecting off-diagonal elements in the obsertian error covariance matrix. White dots denote plume height observations by
593  radar, grey dots denote plume height observationsith a camera.
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596 Figure 11. SQ column loading (DU) for the a posteriori simulation with assimilation of plume height (top) and for he IASI
597 column retrievals (bottom row). Results for 5, 6 ad 7th May, 2010 are shown in the columns from lefto right. The evening
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600  Figure 12. As Figure 11, but 8-10 May, 2010.
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602  Figure 13. Simulated SQ plume height (centre of mass, km) without (left) ad with (middle) assimilation of plume height
603  retrievals for 6-9 (top to bottom row) May, 2010. e corresponding IASI retrievals are shown in the ight column.

604

28



